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Deux des moteurs électriques les plus prometteurs pour l’automobile hybride sont 
les moteurs asynchrones et les moteurs à réluctance variable. Pour leur conception, 
des modèles mathématiques précis sont nécessaires afin d’évaluer leurs perfor-
mances avant de disposer du prototype. Diverses techniques de modélisation exis-
tent, dont le circuit magnétique équivalent. Nous appliquerons cette technique aux 
deux machines citées, évaluerons sa précision et tenterons de l’améliorer.  

Mots-clefs : véhicule, voiture, hybride, machine, moteur, électrique, réluctance, va-
riable, asynchrone, modélisation, circuit, magnétique, équivalent, éléments, finis.  
 
Two of the most promising electric motors for hybrid vehicle applications are asyn-
chronous motors and switched reluctance motors. For their design, accurate math-
ematical models are necessary to evaluate their performance before having the pro-
totype. Various techniques of modelization exist, including the magnetic reluctance 
network. We will apply this technique to the two machines mentioned, evaluate its 
accuracy and try to improve it.  
 
Keywords : vehicle, car, hybrid, machine, motor, electric, reluctance, variable, in-
duction, modelization, circuit, magnetic, equivalent, elements, finite. 
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1. Introduction 
 
Electric machines (EMs) are indispensable components in different industrial 
drivetrains. Thanks to their robust control, induction machines (IMs) are still con-
sidered one of the most used EMs in industrial applications [1]. On the other side, 
switched reluctance motors (SRM’s) and their unbeatable efficiency and power den-
sity could very soon disrupt the market [8].  
 
In order to design EMs, accurate models are needed. Finite element (FE) is often 
used to model EMs. However, the computational time, as well as the huge memory 
usage, make the use of FE not preferable, especially in the early design phase where 
a lot of iterations are needed. On the other hand, lumped parameter models can be 
used, which are simple but lack the accuracy. 
 
Alternatively, fast analytical models based on magnetic reluctance network (MRN) 
principle can be used. This technique was used to model two machines: IM and 
SRM. As FE results are infallible, they offer a good base to judge the quality of the 
MRN model. The models have been realized on the Matlab software.     
 
The MRN principle is to convert a magnetic structure (i.e the rotor of an electric 
motor) in a network of interconnected flux tubes and reluctances. This magnetic 
circuit will then be solved in the same way as an electric circuit, applying Kirchoff 
laws. 
 
MRN-modelling can be illustrated with the simple example of a coil making N 
turns around a rectangular frame (length “l” and cross section “A”) made of mag-
netic material (permeability µr)  
 
The following equations can be written [9]: 
 

 
 
 
 
 
 
 

  

  
Figure 1: Magnetic circuit 
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2. SRM 
 
2.1. Introduction 
 
SRM’s, standing it a passive rotor an active stator, have an easy working principle:  
When 2 opposite stator pole windings are powered, magnetic induction B appears, a 
flux is created. 
When a magnetically salient rotor is subject to the flow of flux in the magnetic cir-
cuit, it tends to rotates toward the position of minimum reluctance. Because of the 
relation         moving to the minimum reluctance position means also to move 
in order to maximize the flux    thus moving to the powered pole. When finally 2 
rotor poles are aligned with the powered stator poles, the reluctance is minimum and 
the rotor will stay at this place, producing 0 torque. It is therefore time to power 2 
other opposite stator pole windings, which not have rotor pole aligned with them, to 
continue the rotation of the rotor. [11]  
 

 
Figure 2: SRM principle 

 
The fact that each stator pole produces consecutively an independent torque, com-
bined with the highly symmetricity of the machines, makes the SRM particularly 
suitable for MRN-based models. We can effectively model the values for one pole, 
and then extrapolate them for the other poles and thus for the whole rotation.  
 
However, getting a precise MRN model of an SRM is still a challenge, namely for 
what concerns the air gap reluctance values and the non-linear permeability of the 
magnetic material which requires an iteration process. We will here discuss about 
the precision of the obtained model through a FE comparison, as well as the ap-
plied (or no) ways of improvement. 
 
First, the solving of the MRN network of the SRM’s will be tackled. Secondly, its 
precision will be discussed through a FE comparison. Finally, conclusions are 
made, and we will discuss the possible future improvements. 
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2.2. MRN model 
 
The model should be parametrized and thus work with any number of stator and 
rotor poles. By designing only one pole phase of the motor and shifting the charac-
teristic curves for other pole phases in function of their number, this MRN is univer-
sal. 
 
The SRM’s MRN consists in 4 main ferromagnetic parts: The stator yoke, the rotor 
yoke, the stator pole, the rotor pole. 
When adding the 2 air gaps between the rotor and stator poles, we obtain the circuit 
represented on the figures bellows. Further simplification can be done by summing 
similar reluctances [10]:  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first reluctance to be calculated is the air gap reluctance and its calculation is 
complicated since position dependent. First, different phases are assumed to be in-
dependent. Next, the model is divided into 4 regions according to the position of 
the rotor regarding the position of the stator [10]: 
 
 
 
 
 
 

Simplifying Simplifying 

Figure 3: MRN simplification 
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An air gap permeance is for each region calculated by  
with S, cross section of the flux lines and l, lenght of the flux lines. Both of these 
variables are in the model dynamic functions of , the rotor position angle. 
By gathering those different reluctances, we can assemble the matrix of the total air 
gap permeance. The figure below represent the evolution of the air gap permeance 
evolution around one pole. This evolution applies on every stator pole of the SRM 
since it is highly symmetric. 
 

 
Figure 4: Air gap reluctance 

 
The next reluctances to compute from our MRN are the stator yoke reluctance, the 
rotor yoke reluctance, the stator pole reluctance and the rotor pole reluctance. The 
formula is again given by                    but this time S and l are constant values. On 
the other hand, because of the saturation of the magnetic parts of the motor, the 
magnetic permeability     is not constant and the following loop has to be taken in 
account: 
 

 
Figure 5: Iterative loop 

 
The following iterative schema has therefore been implemented in the model. "Tol" 
is the tolerance value for the iterations: when the step value is lower than "tol", iter-
ations will stop and the last result of the    matrix will be considered correct.  
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The flux    is given by                                                   with the magnetomotive 
force               . A factor 2 is applied because 2 poles are 
active. [9]: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Iterative scheme 
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With “i”, the applied current and “J” the rotor position, the obtained j matrix leads 
through the following formula to the torque matrix: 
 
 
 

 
2.3. Results precision analysis 
 
The precision of the model can be highlighted by testing it with different topologies 
and dimensions of machines and comparing the obtained MRN results with FE re-
sults. In particular, the “8/6” and “6/4” topologies were tested. This means that in 
the first case, the machine stands in 8 stator poles and 6 rotor poles, and in the second 
case, 6 stator poles and 4 rotor poles. 
 
A first sample of the relative permeability result shows a slight difference with the 
finite elements results. The iterative scheme higher the value faster than it should. 
 

 
 

     Figure 7: Mu values comparison 
 

It will result on overestimated flux values. But as the torque only depends on the 
flux variations, we can still expect a good accuracy on the overall machine behav-
iour, which is confirmed by the torque curves analysis: 
 

 
 
 

RMN 
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2.4. Conclusions 
 
The realized MRN model gives a good approximation of the overall performances 
of the SRM in less than 0.2s, which is easily 150 times faster than a FE model.  
The correctness of the output torque values have been repeatable over 2 motors of 
different topologies.  
 
On the other hand, there is still room for improvement in the permeability values. 
The iterative scheme for the relative permeability in the magnetic parts can be im-
proved, but the main problem remains the air gap reluctance which is reputed as 
being very difficult to modelize for the SRM’s. A way to increase the precision of 
the model would then be to use a FE model only for this reluctance, and the RMN 
for all the other magnetic values of the machine. 
It could lead to a good compromise between computation time and precision. 
 
 
 
 
 
 
 
 
 
 

Figure 9: 6/4 SRM - Linear conditions Figure 8: 8/6 SRM - non-linear conditions 



127 
 

3. Induction Machine 
 
3.1. Introduction 
 
The MRN models of IMs were previously presented in literature, see for example 
[2]. However, the implementation of these models is not straight-forward for IM’s. 
For example, a lot of tuning is needed to overcome the matrices bad conditioning. In 
this work, an efficient approach was provided to improve the quality of the MRN 
dynamic models of IMs. In order to validate the developed approach, a comparison 
with FE results is given. 
 
In the subsequent section, an overview about the MRN of IMs is given. In the third 
section, the proposed model improvement is shown and explained. The use case and 
the associated analysis, including validation using the FE model, is discussed in sec-
tion 4. Finally, the conclusions are drawn in section 5. 
 
3.2. MRN model 
 
Basically, the MRN of any electromagnetic device is constructed in such a way that 
each geometrical part of the magnetic circuit, in which a uniform field pattern may 
be assumed, is replaced by its corresponding reluctance element, while the electro-
magnetic sources can be represented by lumped magnetomotive forces (MMF), see 
Fig. 1 where a schematic diagram of the MRN of an IM is shown. 
 
The methodology detailed in this paragraph has already been presented in [2]. There-
fore, the novelty of this present work is not related to the MRN approach itself, but 
rather to the improvement of such dynamic model so as to reduce the model com-
plexity. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 10 : Schematic diagram of the 
MRN of a squirrel-cage IM. 
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By the analogy between electric and magnetic circuits [3], the equivalent MRN cir-
cuit can be analyzed using Kirchhoff’s current (KCL) and voltage laws (KVL) which 
leads to equation (1) modeling the magnetic behaviour of the machine: 

 	𝑨𝒎𝒂𝒈𝒏	𝑿𝒎𝒂𝒈𝒏 = 	𝒀𝒎𝒂𝒈𝒏 

⎣
⎢
⎢
⎢
⎢
⎡
𝑴𝟏 𝟎 𝑨𝒖𝒔𝒕 𝟎

𝟎 𝑴𝟐 𝟎 𝑨𝒖𝒓𝒕
−𝑨𝒔𝒚𝒕 𝟎 	𝑨𝒔𝒔 	𝑨𝒔𝒓
𝟎 −𝑨𝒓𝒚𝒕 	𝑨𝒓𝒔 	𝑨𝒓𝒓 ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
	𝜳𝒔𝒚

	𝜳𝒓𝒚

	𝑼𝒔𝒕
	𝑼𝒓𝒕 ⎦

⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎡
𝑭𝒔𝒚
𝑭𝒓𝒚
𝟎

𝟎 ⎦
⎥
⎥
⎥
⎤

 (1) 

where 	𝑿𝒎𝒂𝒈𝒏, 𝑨𝒎𝒂𝒈𝒏, and 	𝒀𝒎𝒂𝒈𝒏 are respectively the vector of magnetic unknowns 
(containing the stator and rotor yoke fluxes (𝜳𝒔𝒚, 𝜳𝒓𝒚) and the stator and rotor node 
potentials (𝑼𝒔𝒕, 𝑼𝒓𝒕)), the matrix of magnetic coefficients (where 𝑴𝟏 and 𝑴𝟐 are ma-
trices containing the MRN core reluctances, 𝑨𝒔𝒔, 𝑨𝒔𝒓, 𝑨𝒓𝒔 and 𝑨𝒓𝒓 are matrices con-
taining the MRN airgap permeances and 𝑨𝒔𝒚𝒕, 𝑨𝒓𝒚𝒕, 𝑨𝒖𝒔𝒕, 𝑨𝒖𝒓𝒕 are coefficient matrix 
composed by ones and zeros) and the input vector containing the stator and rotor 
yoke MMFs 𝑭𝒔𝒚 and 𝑭𝒓𝒚. 
 
By using Faraday’s, Lenz’s and Ampere’s laws, this magnetic model can be linked 
to the electrical circuits of the machine. Ampere’s law allows to find a relation be-
tween the MMFs in the yokes and the current in the corresponding slot (i.e. stator 
currents and rotor bar currents). In addition, Faraday’s and Lenz’s laws were used to 
take the voltage drop created by flux linkage variation into account on the stator coils 
and to generate equations for the rotor electric meshes. 
 
A linear model of the IM can then be described using matrix-equation (2), where 𝑿, 
𝑨, and 𝒀 are respectively the vector of unknowns (containing the vector of magnetic 
unknowns (𝑿𝒎𝒂𝒈𝒏), stator currents (𝑰𝒔) and rotor ring currents (	𝑰𝒓)), the matrix of 
coefficients and the vector of input, i.e. stator voltage waveform. In the matrix of 
coefficients, one can find the MMF and the flux connection matrices (𝑾𝒄𝒔 and 𝑴𝒄𝒇𝒔, 
which both depend on the winding distribution and the number of turns of the stator 
coils) and the stator and rotor resistance matrices (𝑹𝒔 and 𝑴𝟑, respectively). For more 
details, see [2]. 
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 𝑨𝑿 = 𝒀 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡	𝑴𝒄𝒇𝒔	𝑨𝒔𝒚𝒕 𝟎 𝟎 𝟎

𝑑𝑡
2 𝑹𝒔 𝟎

𝟎 −𝑨𝒓𝒚𝒕 𝟎 𝟎 𝟎 𝑴𝟑
𝑑𝑡
2

𝑴𝟏 𝟎 𝑨𝒖𝒔𝒕 𝟎 −𝑾𝒄𝒔 𝟎

𝟎 𝑴𝟐 𝟎 𝑨𝒖𝒓𝒕 𝟎 𝑨𝒓𝒚𝒕

−𝑨𝒔𝒚𝒕 𝟎 	𝑨𝒔𝒔 	𝑨𝒔𝒓 𝟎 𝟎

𝟎 −𝑨𝒓𝒚𝒕 	𝑨𝒓𝒔 	𝑨𝒓𝒓 𝟎 𝟎 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
	𝜳𝒔𝒚

	𝜳𝒓𝒚

	𝑼𝒔𝒕

	𝑼𝒓𝒕

	𝑰𝒔

	𝑰𝒓 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝒀𝟏

𝒀𝟐

𝟎

𝟎

𝟎

𝟎 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

with: 

𝒀𝟏 = (𝑽𝒔 + 𝑽𝒔(𝒕K𝟏) − 𝑹𝒔𝑰𝒔(𝒕K𝟏))	
𝑑𝑡
2 +	𝑴𝒄𝒇𝒔	𝑨𝒔𝒚𝒕	𝜳𝒔𝒚(𝒕K𝟏) 

𝒀𝟐 = −𝑨𝒓L𝒕	𝜳𝒓𝒚(𝒕K𝟏) −𝑴𝟑
𝑑𝑡
2 	𝑰𝒓(𝒕K𝟏) 

(2) 

 
The obtained electromagnetic model can then be linked to the mechanics of the ma-
chine using (3) based on electromechanical energy conversion principle [3], where 
τN is the electromagnetical torque, PPQ(R,S), the airgap permeance between the i-th 
stator tooth and the j-th rotor tooth, and the rotor angular position θU. 

 
𝜏W = 0.5[[(𝑈](^) − 𝑈_(`))a

bc

`de

bf

^de

𝑑𝑃hi(^,`)
𝑑𝜃k

 (3) 

 
Finally, in order to consider the core saturation in the model, the permeability of the 
iron in each reluctance of the MRN needs to be related to the flux density passing 
through it. In this work, an equation based on two parameters (i.e. a and b) is used 
for saturation effect modeling and is presented in (4) [2]: 

 
𝐻(𝐵) = √𝜋	𝐸𝑟𝑓𝑖(|𝐵|√−𝑎)

2𝑏√−𝑎
 (4) 

 
When core saturation is considered, there is a circular relation between flux density, 
permeability and core reluctances of the MRN. An iterative method is needed and 
Newton-Raphson (NR) successive approach is well suited for that purpose [4]. 
Therefore, the non-linear model of the IM becomes: 

 
w
𝒅𝑿𝒌z𝟏 = 	 (𝑱𝒌z𝟏)z𝟏	(𝑨𝒌z𝟏	𝑿𝒌z𝟏 − 𝒀𝒌z𝟏)

𝑿𝒌 = 		𝑿𝒌z𝟏 +	𝒅𝑿𝒌z𝟏
 (5) 

where k is the iteration identifier and 𝑱𝒌z𝟏 is the Jacobian matrix. In the following 
section, the two techniques improving the model’s accuracy will be shown. 
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3.3. Conditioning improvement 
 
Due to bad conditioning, the inversion of the Jacobian matrix 𝑱𝒌z𝟏 is often imprecise 
and may produce numerical troubles. This bad conditioning is especially a problem 
when the motor operates in highly saturated conditions, the Jacobian matrix then 
becomes singular for inversion and the NR algorithm may not converge. Therefore, 
we propose a reduction technique to avoid this bad conditioning problem and im-
prove the model accuracy. 
 
We have observed that 𝐈𝐬 and 𝐈𝐫 are dependent states that can be extracted from the 
𝑿 vector. The linear model of the IM then becomes (6): 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−𝑨𝒔𝒚𝒕 𝟎 	𝑨𝒔𝒔 	𝑨𝒔𝒓

𝟎 −𝑨𝒓𝒚𝒕 	𝑨𝒓𝒔 	𝑨𝒓𝒓

𝑨𝟏 𝟎 −𝑨𝒖𝒔𝒕 𝟎

𝟎 𝑨𝟐 𝟎 −𝑨𝒖𝒓𝒕⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
	𝜳𝒔𝒚

	𝜳𝒓𝒚

	𝑼𝒔𝒕

	𝑼𝒓𝒕 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝟎

𝟎
2. 𝑹𝒔z𝟏𝑾𝒄𝒔	𝒀𝟏

𝑑𝑡

−
2. 𝑨𝒓𝒚𝒕𝑴𝟑z𝟏𝒀𝟐

𝑑𝑡 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

with: 
𝑨𝟏 =

2
𝑑𝑡 𝑹𝒔

z𝟏𝑾𝒄𝒔𝑴𝒄𝒇𝒔	𝑨𝒔𝒚𝒕 +𝑴𝟏 

𝑨𝟐 =
2
𝑑𝑡 𝑨𝒓𝒚𝒕	𝑴𝟑

z𝟏𝑨𝒓𝒚𝒕 +𝑴𝟐 

(6) 

 
The two extracted state vectors can be calculated afterwards by means of the remain-
ing states, obtained by NR algorithm, by using (7) and (8). 

 	𝑰𝒔 =
2
𝑑𝑡 𝑹𝒔

z𝟏(𝑴𝒄𝒇𝒔	𝑨𝒔𝒚𝒕	𝜳𝒔𝒚 + 	𝒀𝟏) (7) 
 𝑰𝒓 =

2
𝑑𝑡𝑴𝟑

z𝟏(𝑨𝒓𝒚𝒕	𝜳𝒓𝒚 + 𝒀𝟐) (8) 
 
Reducing vector 𝑿 will also reduce coefficient matrix 𝑨, i.e. less spars and smaller 
matrix which leads to a better convergence and a faster computation. With a reduced 
model, the Jacobian matrix 𝑱𝒌z𝟏 can be presented as (9): 

 

𝑱𝒌z𝟏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑨𝒔𝒚𝒕 𝟎 	𝑨𝒔𝒔 	𝑨𝒔𝒓

𝟎 −𝑨𝒓𝒚𝒕 	𝑨𝒓𝒔 	𝑨𝒓𝒓

𝑨𝟏 +
𝒅(𝑴𝟏𝜳𝒔𝒚)
𝒅𝜳𝒔𝒚

𝟎 −𝑨𝒖𝒔𝒕 𝟎

𝟎 𝑨𝟐 +
𝒅(𝑴𝟐𝜳𝒓𝒚)
	𝒅𝜳𝒓𝒚

𝟎 −𝑨𝒖𝒓𝒕⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (9) 

 
  



131 
 

The derivative of matrix 𝑴𝟏𝜳𝒔𝒚, with respect to the stator yoke fluxes (𝜳𝒔𝒚) is shown 
in (10). To obtain the derivative of the 𝑴𝟐𝜳𝒓𝒚 matrix over the rotor yoke fluxes 𝜳𝒓𝒚, 
the elements of stator (10) need to be replaced by their correspondent rotor elements, 
i.e. 𝒅𝑨𝜳𝒔𝒕 𝒅𝜳𝒔𝒚⁄ ,	𝒅𝑨𝜳𝒔𝒚 𝒅𝜳𝒔𝒚� , 𝜳𝒔𝒚,𝒅 and 𝑴𝟏 have to be replaced by 𝒅𝑨𝜳𝒓𝒕 𝒅𝜳𝒓𝒚⁄ , 
𝒅𝑨𝜳𝒓𝒚 𝒅𝜳𝒓𝒚⁄  𝜳𝒓𝒚,𝒅 and 𝑴𝟐 respectively. 

𝒅�𝑴𝟏𝜳𝒔𝒚�
𝒅𝜳𝒔𝒚

= �
𝒅𝑨𝜳𝒔𝒕
𝒅𝜳𝒔𝒚

+
𝒅𝑨𝜳𝒔𝒚
𝒅𝜳𝒔𝒚

�𝜳𝒔𝒚,𝒅 

with: 

𝒅𝑨𝜳𝒔𝒕
𝒅𝜳𝒔𝒚

= 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
	𝑑ℛ]�(e)

𝑑𝛹]L(e)
−
	𝑑ℛ]�(bf)

𝑑𝛹]L(bf)
	𝑑ℛ]�(e)

𝑑𝛹]L(e)
⋯ −

	𝑑ℛ]�(bf)

𝑑𝛹]L(bf)

−
	𝑑ℛ]�(e)

𝑑𝛹]L(e)
	𝑑ℛ]�(a)

𝑑𝛹]L(a)
−
	𝑑ℛ]�(e)

𝑑𝛹]L(e)
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
	𝑑ℛ]�(bfze)

𝑑𝛹]L(bfze)

	𝑑ℛ]�(bf)

𝑑𝛹]L(bf)
0 ⋯

	𝑑ℛ]�(bf)

𝑑𝛹]L(bf)
−
	𝑑ℛ]�(bfze)

𝑑𝛹]L(bfze) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝒅𝑨𝜳𝒔𝒚
𝒅𝜳𝒔𝒚

= 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
	𝑑ℛ]L(e)

𝑑𝛹]L(e)
⋯ 0

⋮ ⋱ ⋮

0 ⋯
	𝑑ℛ]L(bf)

𝑑𝛹]L(bf) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	𝑎𝑛𝑑	𝜳𝒔𝒚,𝒅 = 	

⎣
⎢
⎢
⎢
⎢
⎡
𝛹]L(e) ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝛹]L(bf)⎦
⎥
⎥
⎥
⎥
⎤

 

(10) 

 
In addition to this reduction technique, the inversion of the Jacobian matrix presented 
in (9) can be damped. In other words, a Levenberg-Marquardt coefficient (𝑐) can be 
added to the diagonal of the 𝐉𝐤z𝟏 matrix to smooth the inversion process [5]. The 
value of 𝑐 coefficient needs to be carefully chosen as a trade-off between stability 
and precision. 
 
3.4. Simulation results and validation 
 
In this section, simulation and validation are shown with a 2 pair of poles 36/28 slots 
IM of 1500 W with parameters presented in table I. Corresponding dimensions are 
shown on the schematic cross-section, see Fig. 2. The magnetic core is modelled 
using the saturation curve shown in Fig. 3 obtained by using the two next constants: 

 𝑎 = −0.8, b = 1000 (11) 
 



132 
 

TABLE I Machine properties 
2P-36/28 IM – 1500 W 

 
Fig. 12: Schematic diagram of the machine geometry 

Dimen-
sions 

dso = 130 mm dro = 80 mm 
dsso = 108 mm drsi = 50 mm 
dssi = 80.76 mm dshaft = 25 mm 
hsfl = 0.64 mm hrfl = 0.5 mm 
wsfl = 5.05 mm wrfl = 7.98 mm 
wst = 3.8 mm wrt = 4.4 mm 
lmotor = 100 mm  

Electric 
parame-
ters 

Ns = 36 Nr = 28 
Rstat = 5 Ω Rring = 8.1 mΩ 
N = 44 turns/slot Rbar = 74 mΩ 

 
Fig. 4 to Fig. 7 depict the dynamic behaviour of the machine in saturated conditions. 
The motor is fed by a 200 V, 50 Hz voltage and the load-torque (τ�) is considered 
as squarely dependent on the rotor speed (ωU): 

 𝜏� = 35	. 10z�. 𝜔ka (12) 
 
The transient speed behaviour of the simulation results can be observed in Fig. 4, 
while the electromagnetic and load torques are presented in Fig. 5. The steady-state 
operating point of this simulation is at 1461 rpm and 8.19 Nm. The stator current of 
phase A in time domain is depicted in Fig. 6, it reaches a peak value 13.65 A in 
steady-state. In addition, in Fig. 7 the stator tooth flux density is presented in steady-
state. It can be observed that the maximum reached flux density is around 1.68 T, 
which is at the knee point defined by the B-H curve, see Fig. 3. This shows the non-
linearity is properly considered. 
 
The presented MRN model was validated using FEM and showed a good accuracy 
as can be observed on the torque versus speed characteristic (Fig. 8). On the other 
hand, the computation time is strongly reduced when using MRN method rather than 
FEM. The showed validation was obtained by keeping a 5 A peak in the stator coils 
while making the speed vary between 1000 and 1500 rpm. 
 
Due to its accuracy and low computation time, the MRN model can be used for 
online fault detection. The current spectrum can be analysed to detect broken bars in 
the squirrel cage [6] or inter-turn short circuits in the stator coils [2]. 
 
The model can also be used for efficiency map generation. Since a lot of operating 
points are needed to draw the efficiency map, a low computation time is required to 
obtain quick results. Efficiency can be obtained from the MRN model by the use of 
loss computation. Joule losses can be calculated from the currents and the iron loss 
from the flux densities by the use of separation principle [7]. To speed up the results, 
as well as to ease the implementation of the field-oriented control, this load-voltage 
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input model can be transformed into a speed-current input model by switching cur-
rent and voltage from input to unknown and by putting the speed directly as input of 
the model. This makes it possible to lower the transient time of simulation and reach 
faster steady-state from which efficiency can be computed. 
 

 
Fig. 13: BH-curve 

 
Fig. 16: Stator current of one phase. 

 
Fig. 14: Speed dynamic Fig. 17: Flux density in a stator tooth. 

 
Fig. 15: Torque dynamic 

 
Fig. 18: Mechanical characteristic validation using 

FE 
 
3.5. Conclusions 
 
Two simple techniques were presented in this part in order to improve the transient 
MRN-model of a squirrel cage induction machine. The two techniques are based on 
reducing the system complexity by re-arranging the matrices, and speed up the con-
vergence process by choosing a proper damping coefficient. The improved model is 
applied into a three-phase IM, with acceptable results validated by FE technique 
(5.2% error). It is worth mentioning that the developed model can be used in different 
applications, such as fault detection. Also, it is quite easy to invert the model input 
from voltage source to current source that may result in quick steady-state results. 
 
Finally, we would like to thank the FlandersMake company for welcoming us during 
10 months in the context of this research. 
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